p-group, metabelian, nilpotent (class 4), monomial
Aliases: C23.40D8, (C2×D8)⋊14C4, D8.8(C2×C4), C8.94(C2×D4), (C2×C8).118D4, (C2×C4).138D8, C2.D16⋊15C2, (C2×C16)⋊11C22, C8.5(C22⋊C4), C8.31(C22×C4), (C2×C4).48SD16, C4.12(C2×SD16), C22.55(C2×D8), C2.D8⋊43C22, C2.2(C16⋊C22), (C2×M5(2))⋊13C2, (C2×C8).496C23, (C22×D8).13C2, (C22×C4).331D4, C4.11(D4⋊C4), (C2×D8).102C22, C23.25D4⋊18C2, (C22×C8).230C22, C22.29(D4⋊C4), (C2×C8).80(C2×C4), (C2×C4).758(C2×D4), C4.52(C2×C22⋊C4), C2.30(C2×D4⋊C4), (C2×C4).149(C22⋊C4), SmallGroup(128,872)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.40D8
G = < a,b,c,d,e | a2=b2=c2=1, d8=c, e2=b, ab=ba, dad-1=eae-1=ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bcd7 >
Subgroups: 388 in 130 conjugacy classes, 52 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C16, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, D8, C22×C4, C2×D4, C24, C4.Q8, C2.D8, C2×C16, M5(2), C42⋊C2, C22×C8, C2×D8, C2×D8, C22×D4, C2.D16, C23.25D4, C2×M5(2), C22×D8, C23.40D8
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, D8, SD16, C22×C4, C2×D4, D4⋊C4, C2×C22⋊C4, C2×D8, C2×SD16, C2×D4⋊C4, C16⋊C22, C23.40D8
(1 22)(2 31)(3 24)(4 17)(5 26)(6 19)(7 28)(8 21)(9 30)(10 23)(11 32)(12 25)(13 18)(14 27)(15 20)(16 29)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 16 22 21)(2 20 23 15)(3 14 24 19)(4 18 25 13)(5 12 26 17)(6 32 27 11)(7 10 28 31)(8 30 29 9)
G:=sub<Sym(32)| (1,22)(2,31)(3,24)(4,17)(5,26)(6,19)(7,28)(8,21)(9,30)(10,23)(11,32)(12,25)(13,18)(14,27)(15,20)(16,29), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,17)(13,18)(14,19)(15,20)(16,21), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,16,22,21)(2,20,23,15)(3,14,24,19)(4,18,25,13)(5,12,26,17)(6,32,27,11)(7,10,28,31)(8,30,29,9)>;
G:=Group( (1,22)(2,31)(3,24)(4,17)(5,26)(6,19)(7,28)(8,21)(9,30)(10,23)(11,32)(12,25)(13,18)(14,27)(15,20)(16,29), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,17)(13,18)(14,19)(15,20)(16,21), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,16,22,21)(2,20,23,15)(3,14,24,19)(4,18,25,13)(5,12,26,17)(6,32,27,11)(7,10,28,31)(8,30,29,9) );
G=PermutationGroup([[(1,22),(2,31),(3,24),(4,17),(5,26),(6,19),(7,28),(8,21),(9,30),(10,23),(11,32),(12,25),(13,18),(14,27),(15,20),(16,29)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,16,22,21),(2,20,23,15),(3,14,24,19),(4,18,25,13),(5,12,26,17),(6,32,27,11),(7,10,28,31),(8,30,29,9)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 16A | ··· | 16H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 16 | ··· | 16 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D8 | SD16 | D8 | C16⋊C22 |
kernel | C23.40D8 | C2.D16 | C23.25D4 | C2×M5(2) | C22×D8 | C2×D8 | C2×C8 | C22×C4 | C2×C4 | C2×C4 | C23 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 8 | 3 | 1 | 2 | 4 | 2 | 4 |
Matrix representation of C23.40D8 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
10 | 9 | 0 | 0 | 0 | 0 |
6 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 14 | 14 | 0 | 0 |
7 | 8 | 0 | 0 | 0 | 0 |
15 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[10,6,0,0,0,0,9,7,0,0,0,0,0,0,0,0,3,14,0,0,0,0,14,14,0,0,0,16,0,0,0,0,16,0,0,0],[7,15,0,0,0,0,8,10,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0] >;
C23.40D8 in GAP, Magma, Sage, TeX
C_2^3._{40}D_8
% in TeX
G:=Group("C2^3.40D8");
// GroupNames label
G:=SmallGroup(128,872);
// by ID
G=gap.SmallGroup(128,872);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,723,352,1123,570,360,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^8=c,e^2=b,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d^7>;
// generators/relations